5,126 research outputs found

    Coordinated thermal and optical observations of Trans-Neptunian object (20000) Varuna from Sierra Nevada

    Get PDF
    We report on coordinated thermal and optical measurements of trans-Neptunian object (20000) Varuna obtained in January-February 2002, respectively from the IRAM 30-m and IAA 1.5 m telescopes. The optical data show a lightcurve with a period of 3.176+/-0.010 hr, a mean V magnitude of 20.37+/-0.08 and a 0.42+/-0.01 magnitude amplitude. They also tentatively indicate that the lightcurve is asymmetric and double-peaked. The thermal observations indicate a 1.12+/-0.41 mJy flux, averaged over the object's rotation. Combining the two datasets, we infer that Varuna has a mean 1060(+180/-220) km diameter and a mean 0.038(+0.022/-0.010) V geometric albedo, in general agreement with an earlier determination using the same technique.Comment: Accepted for publication in Astronomy & Astrophysics (7 pages, including 3 figures

    High resolution spectroscopy of Pluto's atmosphere: detection of the 2.3 Ό\mum CH4_4 bands and evidence for carbon monoxide

    Full text link
    The goal is to determine the composition of Pluto's atmosphere and to constrain the nature of surface-atmosphere interactions. We perform high--resolution spectroscopic observations in the 2.33--2.36 ÎŒ\mum range, using CRIRES at the VLT. We obtain (i) the first detection of gaseous methane in this spectral range, through lines of the Îœ3\nu_3 + Îœ4\nu_4 and Îœ1\nu_1 + Îœ4\nu_4 bands (ii) strong evidence (6-σ\sigma confidence) for gaseous CO in Pluto. For an isothermal atmosphere at 90 K, the CH4_4 and CO column densities are 0.75 and 0.07 cm-am, within factors of 2 and 3, respectively. Using a physically--based thermal structure model of Pluto's atmosphere also satisfying constraints from stellar occultations, we infer CH4_4 and CO mixing ratios qCH4_{CH_4}= 0.6−0.3+0.6^{+0.6}_{-0.3}% (consistent with results from the 1.66 ÎŒ\mum range) and qCO_{CO} = 0.5−0.25+1^{+1}_{-0.25}×10−3\times10^{-3}. The CO atmospheric abundance is consistent with its surface abundance. As for Triton, it is probably controlled by a thin, CO-rich, detailed balancing layer resulting from seasonal transport and/or atmospheric escape.Comment: Astronomy and Astrophysics Letters, in pres

    Wind mapping in Venus' upper mesosphere with the IRAM-Plateau de Bure interferometer

    Full text link
    The dynamics of the upper mesosphere of Venus (~85-115 km) have been characterized as a combination of a retrograde superrotating zonal wind (RSZ) with a subsolar-to-antisolar flow (SSAS). Numerous mm-wave single-dish observations have been obtained and could directly measure mesospheric line-of-sight winds by mapping Doppler-shifts on CO rotational lines, but their limited spatial resolution makes their interpretation difficult. By using interferometric facilities, one can obtain better resolution on Doppler-shifts maps, allowing in particular to put firmer constraints on the respective contributions of the SSAS and RSZ circulations to the global mesospheric wind field. We report on interferometric observations of the CO(1-0) line obtained with the IRAM-Plateau de Bure interferometer in November 2007 and June 2009, that could map the upper mesosphere dynamics on the morning hemisphere with a very good spatial resolution (3.5-5.5"). All the obtained measurements show, with a remarkably good temporal stability, that the wind globally flows in the (sky) East-West direction, corresponding in the observed geometry either to an unexpected prograde zonal wind or a SSAS flow. A very localized inversion of the wind direction, that could correspond to a RSZ wind, is also repeatedly detected in the night hemisphere. The presence of significant meridional winds is not evidenced. Using models with different combinations of zonal and SSAS winds, we find that the data is best reproduced by a dominant SSAS flow with a maximal velocity at the terminator of ~200 m/s, displaying large diurnal and latitudinal asymmetries, combined with an equatorial RSZ wind of 70-100 m/s, overall indicating a wind-field structure consistent with but much more complex than the usual representation of the mesospheric dynamics.Comment: Accepted for publication in A&

    First Disk-Resolved Millimeter Observations Of Io's Surface And SO2 Atmosphere

    Get PDF
    Aims. In spite of considerable progress in the last two decades, Io's atmosphere remains poorly understood. The goal of this work is to improve our understanding of its spatial distribution, temperature and dynamics. Methods. We present millimeter observations of Io's surface and SO2 atmosphere at 1.4 mm obtained with the IRAM Plateau de Bure Interferometer in January-February 2005. With a synthesized beam of 0.5 x 1.5 '', these observations resolve Io's similar to 1.0 '' disk in the longitudinal/local time direction, and sample the leading and trailing hemispheres of Io. Results. The measured continuum total flux and visibilities show that continuum radiation originates from a depth of at least 1 cm in Io's subsurface. On both the leading and trailing sides, emission in the SO2 216.643 GHz line appears spatially narrower than the continuum, and suggests that the atmosphere covers similar to 80% of the surface on the leading side and similar to 60% on the trailing. On the leading side, disk-resolved spectra yield Doppler shift measurements, indicating a beam-integrated limb-to-limb velocity difference of 330 +/-3 100 m/s in the prograde direction. Such a flow allows an improved fit of disk-averaged SO2 spectra, but its origin remains to be understood. Mean gas temperatures are in the range 130-180 K, in agreement with estimates from IR measurements, and with a tendency for higher trailing vs leading side gas temperatures. On the basis of realistic plume models, we find that the contribution of isolated volcanic plumes to the SO2 emission is small.Astronom

    Exploring Io's atmospheric composition with APEX: first measurement of 34SO2 and tentative detection of KCl

    Full text link
    The composition of Io's tenuous atmosphere is poorly constrained. Only the major species SO2 and a handful of minor species have been positively identified, but a variety of other molecular species should be present, based on thermochemical equilibrium models of volcanic gas chemistry and the composition of Io's environment. This paper focuses on the spectral search for expected yet undetected molecular species (KCl, SiO, S2O) and isotopes (34SO2). We analyze a disk-averaged spectrum of a potentially line-rich spectral window around 345 GHz, obtained in 2010 at the APEX-12m antenna (Atacama Pathfinder EXperiment). Using different models assuming either extended atmospheric distributions or a purely volcanically-sustained atmosphere, we tentatively measure the KCl relative abundance with respect to SO2 and derive a range of 4x10^{-4}-8x10^{-3}. We do not detect SiO or S2O and present new upper limits on their abundances. We also present the first measurement of the 34S/32S isotopic ratio in gas phase on Io, which appears to be twice as high as the Earth and ISM reference values. Strong lines of SO2 and SO are also analyzed to check for longitudinal variations of column density and relative abundance. Our models show that, based on their predicted relative abundance with respect to SO2 in volcanic plumes, both the tentative KCl detection and SiO upper limit are compatible with a purely volcanic origin for these species.Comment: Accepted for publication in ApJ. 11 pages, 4 figure

    Detection of CO in Triton's atmosphere and the nature of surface-atmosphere interactions

    Full text link
    Triton possesses a thin atmosphere, primarily composed of nitrogen, sustained by the sublimation of surface ices. The goal is to determine the composition of Triton's atmosphere and to constrain the nature of surface-atmosphere interactions. We perform high-resolution spectroscopic observations in the 2.32-2.37 Ό\mum range, using CRIRES at the VLT. From this first spectroscopic detection of Triton's atmosphere in the infrared, we report (i) the first observation of gaseous methane since its discovery in the ultraviolet by Voyager in 1989 and (ii) the first ever detection of gaseous CO in the satellite. The CO atmospheric abundance is remarkably similar to its surface abundance, and appears to be controlled by a thin, CO-enriched, surface veneer resulting from seasonal transport and/or atmospheric escape. The CH4_4 partial pressure is several times larger than inferred from Voyager. This confirms that Triton's atmosphere is seasonally variable and is best interpreted by the warming of CH4_4-rich icy grains as Triton passed southern summer solstice in 2000. The presence of CO in Triton's atmosphere also affects its temperature, photochemistry and ionospheric composition. An improved upper limit on CO in Pluto's atmosphere is also reported.Comment: 11 pages, including 4 figures and 2 on-line figures Astronomy and Astrophysics, in press (accepted March 13, 2010

    The Thin Gap Chambers database experience in test beam and preparations for ATLAS

    Full text link
    Thin gap chambers (TGCs) are used for the muon trigger system in the forward region of the LHC experiment ATLAS. The TGCs are expected to provide a trigger signal within 25 ns of the bunch spacing. An extensive system test of the ATLAS muon spectrometer has been performed in the H8 beam line at the CERN SPS during the last few years. A relational database was used for storing the conditions of the tests as well as the configuration of the system. This database has provided the detector control system with the information needed for configuration of the front end electronics. The database is used to assist the online operation and maintenance. The same database is used to store the non event condition and configuration parameters needed later for the offline reconstruction software. A larger scale of the database has been produced to support the whole TGC system. It integrates all the production, QA tests and assembly information. A 1/12th model of the whole TGC system is currently in use for testing the performance of this database in configuring and tracking the condition of the system. A prototype of the database was first implemented during the H8 test beams. This paper describes the database structure, its interface to other systems and its operational performance.Comment: Proceedings IEEE, Nuclear Science Symposium 2005, Stockholm, Sweeden, May 200

    Pluto's lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations

    Get PDF
    Context: Pluto possesses a thin atmosphere, primarily composed of nitrogen, in which the detection of methane has been reported. Aims: The goal is to constrain essential but so far unknown parameters of Pluto's atmosphere such as the surface pressure, lower atmosphere thermal stucture, and methane mixing ratio. Methods: We use high-resolution spectroscopic observations of gaseous methane, and a novel analysis of occultation light-curves. Results: We show that (i) Pluto's surface pressure is currently in the 6.5-24 microbar range (ii) the methane mixing ratio is 0.5+/-0.1 %, adequate to explain Pluto's inverted thermal structure and ~100 K upper atmosphere temperature (iii) a troposphere is not required by our data, but if present, it has a depth of at most 17 km, i.e. less than one pressure scale height; in this case methane is supersaturated in most of it. The atmospheric and bulk surface abundance of methane are strikingly similar, a possible consequence of the presence of a CH4-rich top surface layer.Comment: AA vers. 6.1, LaTeX class for Astronomy & Astrophysics, 9 pages with 5 figures Astronomy and Astrophysics Letters, in pres

    Exploring the spatial, temporal, and vertical distribution of methane in Pluto's atmosphere

    Full text link
    High-resolution spectra of Pluto in the 1.66 um region, recorded with the VLT/CRIRES instrument in 2008 (2 spectra) and 2012 (5 spectra), are analyzed to constrain the spatial and vertical distribution of methane in Pluto's atmosphere and to search for mid-term (4 year) variability. A sensitivity study to model assumptions (temperature structure, surface pressure, Pluto's radius) is performed. Results indicate that (i) no variation of the CH4 atmospheric content (column-density or mixing ratio) with Pluto rotational phase is present in excess of 20 % (ii) CH4 column densities show at most marginal variations between 2008 and 2012, with a best guess estimate of a ~20 % decrease over this time frame. As stellar occultations indicate that Pluto's surface pressure has continued to increase over this period, this implies a concomitant decrease of the methane mixing ratio (iii) the data do not show evidence for an altitude-varying methane distribution; in particular, they imply a roughly uniform mixing ratio in at least the first 22-27 km of the atmosphere, and high concentrations of low-temperature methane near the surface can be ruled out. Our results are also best consistent with a relatively large (> 1180 km) Pluto radius. Comparison with predictions from a recently developed global climate model GCM indicates that these features are best explained if the source of methane occurs in regional-scale CH4 ice deposits, including both low latitudes and high Northern latitudes, evidence for which is present from the rotational and secular evolution of the near-IR features due to CH4 ice. Our "best guess" predictions for the New Horizons encounter in 2015 are: a 1184 km radius, a 17 ubar surface pressure, and a 0.44 % CH4 mixing ratio with negligible longitudinal variations.Comment: 21 pages, 6 figure
    • 

    corecore